

PRODUCT INFORMATION

Cellulase R-10 from Aspergillus niger

Cat. No. 16421

Product Description:

General

A multi-component enzyme system with high cellulose activity Cellulase is able to decompose natural (e.g. filter paper) as well as modified celluloses (e.g. carboxymethyl cellulose). It hydrolyses 1,4- β -D-glucosidic linkages in cellulose, lichenin and cereal β -D-glucans. In nature, cellulose is found in association with other components e.g. hemicellulose, lignin and pectin. SERVA cellulases contain a number of other activities, which assist in breaking down these components and degrading cell walls. α -Amylase hydrolyses 1,4- α -D-glucosidic linkages in polysaccharides containing three or more 1,4- α -linked D-glucose units. Pectinase randomly cleaves 1,4- α -D galactosiduronic linkages in galacturans. Contains as well hemicellulase and protease activities.

Application

- Isolation of plant protoplasts² for its ability to degrade cell walls, often in combination with Macerozyme R-10 (cat. no. 28032)
- · Carbohydrate analysis

Features

- Lyophilisate activity: ca. 1 U/mg*
- Temperature optimum: 40 50 °C
- Optimal pH: 4 5 (activity range 3 7)
- Extraneous activities: α-amylase ca. 0.8 U/mg, hemicellulase ca. 1 U/mg, pectinase ca. 0.4 U/mg, protease ca. 0.01 DMC-U/mg

Stability and Storage

Lyophilisate should be stored at a dry place in a tightly closed container at +2 °C to +8 °C. Cellulase solutions are stable at pH 5 - 7 at 4 °C for 24 h. Activity is completely destroyed after 10 - 15 minutes at 80 °C.

Inhibition/ Inactivation

Cellulase is inhibited by its reaction products e.g. glucose, cellobiose. Hg^{2^+} inhibits the activity completely, whereas Mn^{2^+} , Ag^{2^+} , Zn^{2^+} and Cu^{2^+} are only slightly inhibitory.

*Unit definition: 1 U catalyses the liberation of 1 µmol glucose from sodium carboxymethyl cellulose per minute at 40 °C, pH 4.5; glucose is determined with alkaline copper reagent³.

Version 11/14

¹Beldman, G. et al. (1985) Eur. J. Biochem. 146, 301 - 308

²Potrykus, J. & Shillito, R. D. (1986) Methods Enzymol. 118, 549 – 578

³Okada, G. (1988) Methods Enzymol. 160, 259 – 263